Proline Rich Motifs as Drug Targets in Immune Mediated Disorders

نویسندگان

  • Mythily Srinivasan
  • A. Keith Dunker
چکیده

The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains.

Src homology 3 (SH3) and WW domains are known to associate with proline-rich motifs within their respective ligands. Here we demonstrate that the proposed adapter protein for Src kinases, Sam68, is a ligand whose proline-rich motifs interact with the SH3 domains of p59(fyn) and phospholipase Cgamma-1 as well as with the WW domains of FBP30 and FBP21. These proline-rich motifs, in turn, are flan...

متن کامل

Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis.

We have conducted a survey of proline-rich (PxxP) motifs in the proteomes of human, mouse, yeast, Mycobacterium tuberculosis and Plasmodium falciparum. Our analyses reveal a strikingly high occurrence of these motifs in each organism, suggesting a wide dependence on protein-protein interaction networks in cellular systems. All proteomes considered have an abundance of PxxP motifs which can pote...

متن کامل

P 115: Potential Therapeutic Targets Related to Neuroinflammation in Treatment and Prevention of Autism

Autism spectrum disorder (ASD) is a mental condition, present from early childhood, characterized by great difficulty in communicating and forming relationships with others and using language. In the last four decades many studies have shown that immune responses in different regions of brain play an important role in ASD pathogenicity. A conservative estimate based on the research suggests tha...

متن کامل

Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes.

Proline-rich sequences (PRS) and their recognition domains have emerged as transposable protein interaction modules during eukaryotic evolution. They are especially abundant in proteins associated with pre-mRNA splicing and likely assist in the formation of the spliceosome by binding to GYF and WW domains. Here we profile PRS-mediated interactions of the CD2BP2/52K GYF domain by a site-specific...

متن کامل

Proline: The Distribution, Frequency, Positioning, and Common Functional Roles of Proline and Polyproline Sequences in the Human Proteome

Proline is an anomalous amino acid. Its nitrogen atom is covalently locked within a ring, thus it is the only proteinogenic amino acid with a constrained phi angle. Sequences of three consecutive prolines can fold into polyproline helices, structures that join alpha helices and beta pleats as architectural motifs in protein configuration. Triproline helices are participants in protein-protein s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012